

Features

- · Forces limited in both directions
- · High response accuracy
- · Automatic re-engagement
- · Maintenance-free
- · Robust construction
- Uncomplex design
- · Easy to build on
- For disengaging forces up to 140 000 N
- · Disengaging force finely adjustable

Application Example

Shown in figure 74-2 is the operation of the feeding equipment for workpieces on an interlinked installation. The feeding equipment is driven by a crankshaft pin on the output shaft via a connecting rod and a lever. The Force Limiter with non-contact proximity switch is built into the connecting rod as shown in figure 74-2.

If the material jams the force in the connecting rod increases considerably, causing extensive damage in the machine if there is no safety installation available. The Force Limiter ensures that no excessive high forces reach the feed mechanism. If the force in the Force Limiter exceeds its preset limit it disengages and, through the non-contact proximity switch, a signal is given to switch off the drive.

Why RINGSPANN Force Limiters?

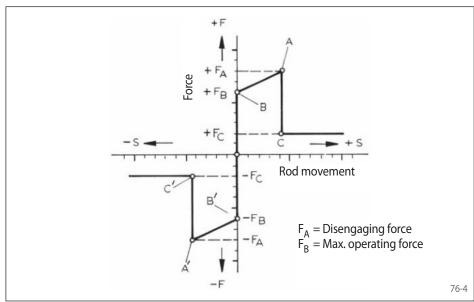
There are many ways of transmitting forces and torques in machines, installations and vehicles. The advances in constructional engineering are marked by components which run faster and are of a lighter construction. Therefore it has become necessary to provide for safety elements at the critical points. Until now these were usually in the shape of overload clutches on rotating shafts which, once the maximum torque was exceeded, would either slip, stop, or automatically cut out.

However, many machines and installations have elements which transmit longitudinal forces. To prevent damage and breakdowns a solution for limiting the amount of these forces has to be found. RINGSPANN has designed a series of Force Limiters, outstanding in that forces up to a certain size can be transmitted in both directions completely free of play and rigid. On exceeding the pre-set disengaging force F_A the power of the force is interrupted and the output part is no longer

driven. After the overload has been cleared the driving part and the driven part are aligned towards each other and the Force Limiter re-engages automatically.

The Force Limiter can be fitted with non-contact proximity switch to give early warning of reaching a certain force, or disengaging signal.

RINGSPANN Force Limiter PAG as overload clutch in a filling plant


Assembly and Operation

Assembly and operation of the RINGSPANN Force Limiter can be seen in illustrations 76-1 and 76-4. The sectional drawing in figure 76-1 shows the standard type of basic unit. The rod (1) is connected with the housing (3) via locking segments (2). The locking segments (2) are pressed into the groove (5) of the rod and against the conical surface (6) of the slide ring via the disc spring pack (4). If a force is effective between the rod and the housing, then, according to figure 76-4, up to force F_B no movement takes place between the two parts. If the force is increased the rod moves relative to the housing until the disengaging force $\boldsymbol{F}_{\boldsymbol{A}}$ is reached. The force then drops to the value F_C . The loss of force down to F_C is effected according to the direction C. The maximum possible operating force should always be less than $\boldsymbol{F}_{\boldsymbol{B}}$ and considerably more than F_{C} . With the RINGSPANN Force Limiter F_B is always larger than 0,7 x F_A and F_C is approx. 0,2 x F_A.

This disengaging force F_A can easily be adjusted by changing the number of washers (7). The nut (8) is always tightened against the housing to prevent unauthorised increase of the disengaging force.

Figure 76-2 and 76-3 show the Force Limiter in the disengaged position with the force effective towards the right and left respectively. In both cases one can see clearly that in this position the locking segments are clear of the groove in the rod, the springs are at maximum pressure.

Technical Data and Dimensions

Туре		Max. Disengaging	d	А	В	С	D	E	G	Н	Stroke		K	L	Engagement travel		Across flats	
without	with	Force									Pressure	Tension			Pressure	Tension	SW ₁	SW ₂
switch	switch	F _A N	mm		mm		mm	mm	mm	mm	h _d mm	h _z mm	mm	mm	S _d mm	S _z mm		
PA 12	PAG 12	3600	12	M 20 x 1,5	10	M 6	32	10	61	16	16	20	38	95	3,5	2,7	11	30
PA 20	PAG 20	10 000	20	M 30 x 1,5	15	M 10	50	16	85	20	20	25	57	132	4,3	3,4	17	46
PA 30	PAG 30	22 000	30	M 45 x 1,5	20	M 16	75	25	120	24	24	40	78	180	6,9	5,4	27	65
PA 50	PAG 50	62 000	50	M 70 x 2,0	28	M 24	132	40	212	36	36	63	150	300	11,3	8,8	46	-
PA 75	PAG 75	140 000	75	M 100 x 2,0	40	M 36	200	60	315	57	57	100	215	450	17,3	13,6	70	-

Accessories

Proximity switch: signals excessive disengaging force for drive unit braking

Proximity switch

Operating voltage: 10-30 V DC PNP transistor Output: Normal condition: closed Max. switching current: 200 mA Domestic electricity requirement: 10 mA IP 67 Protection class: -25° ... +75° C Ambienttemperature: Cable length: 2 m

Ordering

Please indicate the required disengaging force on your order. The Force Limiter can be supplied with preset disengaging force on request.

Other rod lengths and -connections available as special types.

We shall be pleased to advise you on the correct choice and dimension of a suitable Force Limiter.

Any questions? Please contact us.